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Analysis of Higher Order Mode Wave in Air Ventilation Grille 
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A conceptual model for manufacturing the new type of soundproofing ventilation grille unit is 

present. The central problem is designing the shape and dimension of this unit and the place-

ment of these input and output opening in such a way as to maximize ventilation as well as 

preventing outside noise from entering the home. In this work, a method to predict the inser-

tion-loss of ventilation grille unit is proposed by solving the wave equation, considering the 

resonance frequencies of higher-order mode. 
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1. INTRODUCTION 

Numerous studies on assessing the acoustic 

performance of vented facades to inner 

rooms have been published. However, there 

are still limited researches on the particular 

case of housing in tropical and developing 

country where the noise propagation needs 

to be prevented and the natural ventilation is 

demanded. As shown in Fig.1, ventilation 

grille consisted of several slits opening side 

by side in a wall is widely used in tropical 

climates countries. 

However, the annual increase in traffic noise 

in developing tropical countries has ren-

dered this kind of ventilation grille to be 

useless because it serve a direct pathway for 

traffic noise to enter the home. In this report 

we deal with a ventilation grille consisted of 

several slits opening side by side in a wall. 

A method to predict the sound propagation 

in ventilation grille unit is proposed by 

solving the wave equation, considering the 

resonance frequencies of higher-order mode. 

 

2. METHOD OF ANALYSIS 

Model of the ventilation grille is shown 

in Fig.2. A section area 
w

S a b= ×  and 

depth L of rectangular cavity that has N 

inputs and M outputs at both side. Here, 

we present the theoretical calculation of 

the sound pressure inside the ventilation 

grille including the effects of higher-order 

mode wave for a simple case where no 

acoustic material is used.  

Wave equation in term of the velocity po-

tential is given by 

 

∂2

∂x
2

+
∂2

∂y
2

+
∂2

∂z
2







Φ =

1

c
2

∂2

∂t
2

Φ    (1) 

 

where c is sound velocity, Let  

2 exp( )j tφ ωΦ =  ( j2 = −1 , ω = k c , k ：

wave number) then the complete solution of 

Eq.(1) is given by 

 

φ = Aeµz + Be− µz( ) C sinα x + Dcosα x( )   

E sin s2 − α 2 y + F cos s2 − α 2 y( )  (2) 
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where A, B, C, D, E and F are arbitrary 

constants determinable from the boundary 

conditions, α , s and µ are the constants. 

Let V
x

= − ∂φ / ∂x , V
y

= − ∂φ / ∂y and 

V
z

= − ∂φ / ∂z be the velocity components 

in the x , y and z directions, respectively. 

At the left and the right side of the 

ventilation grill as shows in Fig. 1, the 

boundary conditions are 

 

[1] 0
x

V = at 0x =      (3) 

[2] 0
x

V = at x a=      (4) 

[3] 0
y

V =  at 0y =      (5) 

[4] 0
y

V =  at y b=      (6) 

 

At the front side of ventilation grille, the 

velocity component in z direction be the 

sum of N inputs which has a velocity ( )

0

i
V

( 1, ..., )i N= , respectively. 

 

[5]  at 0z =         
(1) (1) (2) (2)

0 0 0 0
( , ) ( , )

z
V V F x y V F x y= + + ⋅ ⋅ ⋅  

( ) ( ) ( ) ( )
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1

( , ) ( , )
N

N N i i

i

V F x y V F x y
=
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where ( )

0
( , )

i
F x y =1 at the input section 

area and ( )

0
( , )

i
F x y =0 elsewhere. 

Similarly, At the back side of ventilation 

grille, the velocity component in z direction 

be the sum of M output which has a velocity 

( ) ( 1,...., )i

L
V i M= , respectively. 

 

[6] at z L=  

(1) (1) (2) (2)
( , ) ( , )

z L L L L
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( ) ( ) ( ) ( )
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L L L L
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where ( )
( , )

i

L
F x y =1 at the output section 

area and ( )
( , )

i

L
F x y =0 elsewhere. 

According to the boundary conditions 

Eq.(3)-(6), φ can be determined [ see Ap-

pendix]. By using the relation

P
L

= jk ρcφ(x, y, L) , the sound pressure at the 

outside can be obtained. The average of 

sound pressure at the outside becomes. 
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µ
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=
mπ
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the symbol 
•

•

∑ means
n=0

∞

∑
m=0

∞

∑ without 

m=n=0. The first term on the bracket repre-

sents the sound pressure of the plane wave 

and the second one represents the sound 

pressure components of the higher-order 

mode wave, respectively. From Eq.(9) 
L

P  

become great when at the following reso-

nance frequencies of 

 

sin( ) 0 ( 1, 2, 3.... )
2

c
kL f

L
η η= ∴ = = (14) 

( ), ,sinh 0
m n m n

Lµ µ =        

2 2 2

,
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m n

c m n
f

a b L

π π ηπ

π

     
∴ = + −     

     
  

( 0,1, 2... )η =  (15) 

 

Generation mechanism of these frequencies 

can be understood according to Eq.(14) and 

Eq.(15). The former and the latter also have 

many resonance frequencies occurred cor-

responding to the increasing of η . There-

fore, it is clear that when we can eliminate 

an arbitrary higher-order mode wave mode 

by any method, we will not only avoid many 

resonances generated by this mode but also 

obtain the low level of the entire output 

sound pressure. In order to have a great 

soundproffing capability, it is necessary to 

minimize those level of higher-order mode 

wave defined by ∆
m,n

, λ
m,n

and θ
m,n

in 

Eq.(10)-Eq.(12) at least. When we select the 

integration interval from 0 to a, not only all 

of odd mode waves but also many even 

mode waves can be eliminate. To examine 

the accuracy of our calculation result, the 

insertion loss measurement was carried out. 

The measurement method is based on Ref 

[1] with an example when ventilation grille 

having one input and one output as shown in 

Fig.3  and the result is shown in Fig.4. 

Dimension of ventilation grille is 48cm x 

7.5cm x 29cm and all of input and output 

have a same cross section area of 86.4cm
2
. 

All odd and some even higher order mode 

can be eliminated when changing the inter-

val of integration in ,m n∆ . 

 

3. CONCLUSIONS 

A method to predict the sound propagation 

in ventilation grille unit is proposed by 

solving the wave equation, considering the 

resonance frequencies of higher-order mode. 

In order to maximize the soundproofing ca-

pability, it is necessary to decide the position 

of each input and output defined by 

Eq.(11)-Eq.(13). This technology will be 

present in an upcoming report. 

 

4. APPENDIX 

 

In order to find φ  from Eqs.(3) to (8), let  

a
φ  be the solution of Eq.(2) obtained for the 

following boundary conditions: 

[1]  at 0x = ,  / 0
a

xφ− ∂ ∂ =  (A-1) 
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[2]  at x a= ,  / 0
a

xφ− ∂ ∂ =  (A-2) 

[3]  at 0y = ,  / 0
a

yφ− ∂ ∂ =  (A-3) 

[4]  at y b= ,  / 0
a

yφ− ∂ ∂ =  (A-4) 

[5]  at 0z = ,        

( ) ( )

0 0

1

/ ( , )
M

i i

a

i

z V F x yφ
=

− ∂ ∂ =∑  (A-5) 

[6]  at z L= ,  / 0
a

zφ− ∂ ∂ =  (A-6) 

and let 
b

φ  be the solution of Eq.(2) 

obtained for the following boundary  

conditions: 

[1]  at 0x = ,  / 0
b

xφ− ∂ ∂ =  (A-7) 

[2]  at x a= ,  / 0
b

xφ− ∂ ∂ =  (A-8) 

[3]  at 0y = ,  / 0
b

yφ− ∂ ∂ =  (A-9) 

[4]  at y b= ,  / 0
b

yφ− ∂ ∂ =   (A-10) 

[5]  at 0z = ,  / 0
b

zφ− ∂ ∂ =   (A-11) 

[6]  at z L= ,         

 ( ) ( )

1

/ ( , )
M

i i

b L L

i

z V F x yφ
=

− ∂ ∂ =∑  (A-12) 

then φ  can be obtained as φ =
a

φ +
b

φ . 

At first, 
a

φ  can be derive as following 

procedure. From (A-1) we have 

( )
0

sin cos 0
x

C x D x
x

α α
=

∂
+ =

∂
    

0C∴ =      (A-13) 

From(A-2) 

cos 0

x a

D x
x

α

=

∂
=

∂

      

( )0,1, 2, ,m m L
a

π
α∴ = = L  (A-14) 

 Substituting Eqs.(A-13)-(A-14)into Eq. (2) 

 

( )
0

cosz z

m

Ae Be m
a

µ µ π
φ

∞
−

=

 
= +  

 
∑     

( )2 2 2 2sin cosE s y F s yα α− + −  (A-15) 

from Eq. (A-3) 

( )2 2 2 2

0

sin cos 0
y

E s y F s y
y

α α
=

∂
− + − =

∂
  

0E∴ =   (A-16) 

and from Eq. (A-4) 

 

( )2 2cos 0

y b

F s y
y

α

=

∂
− =

∂
   

( )2 2 0,1, ,s n n L
b

π
α∴ − = = L  (A-17) 

Substituting (A.16) and (A.17) into Eq. 

(A-15), we have 

( ), ,

0 0

m n m n
z z

a

m n

Ae Be
µ µ

φ
∞ ∞

−

= =

= +∑∑     

cos cos
m y n y

a b

π π   
   
   

  (A-18) 

where 

( ) ( )
2 2 2

,
/ /

m n
m a n b kµ π π= + −   (A-19) 

from Eq. (A-6) 

( ), , 0m n m nz z

z L

Ae Be
z

µ µ−

=

∂
+ =

∂
    

,2 m nL
B Ae

µ
∴ =     (A-20) 

Substituting into Eq. (A-18) 

( ),

, ,

0 0

cosh ( )m n L a

a m n m n

m n

e z L C
µ

φ µ
∞ ∞

= =

= −∑∑   
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cos cos
m y n y

a b

π π   
   
   

  (A-21) 

from Eq. (A-5) 

 

( ),

, ,

0 0
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e z L C
z

µ
µ

∞ ∞

= =

∂
− −

∂
∑∑   

0
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   
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0 0

1
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i i
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By multiplying both sides of Eq.(A-22) by 

cos( / )cos( / )m x a n y bπ π  and integrating 

with respect to x from 0 to a and with re-

spect to y from 0 to b we can determine the 

constant ,

a

m n
C . 

( ),

, ,

0 0

sinhm nL a
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 (A-23) 

 

 

let ,m nθ  is the right term of Eq.(A-23) 

( ) ( )

, 0 0
0 0

1

( , )
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a b
i i
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V F x yθ
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00 00
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(A-24) 

where ( )

0

i
U is the volume velocity at the 

output defined by ( ) ( ) ( )

0 0 0

i i i
U V S= . 

Next, find ,

a

m nC from (A-23) and substitut-

ing to (A-21), then 
a

φ is obtained as 

( )
( )

,

,

0 0 , ,

cosh ( )4

sinh

m n

a m n

m nw m n m n

z L

S L

µ
φ θ

µ µ

∞ ∞

= =
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 (A-25) 

Similarly, by using Eqs. (A-7) - (A.12),  
b

φ  

can be obtained as 

( )
( )

,

,

0 0 , ,

cosh4

sinh

m n

b m n
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z

S L

µ
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where 

( ) ( )
1 1

( ) ( )
0 0

( )

, ( )
1

i i
L L

i i
L L

iM
a b

L
m n ia b

i L
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  (A-27) 

as mentioned above, φ is the sum of 
a

φ and

b
φ , then we obtain 

( , , )
a b

x y zφ φ φ= +       

  

( )
( )

( )
( )

, ,

, ,

0 0 , , , ,

cosh ( ) cosh4

sinh sinh

m n m n

m n m n

m nw m n m n m n m n

z L z

S L L

µ µ
θ λ

µ µ µ µ

∞ ∞

= =

 − 
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∑∑

 

cos cos
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 (A-28) 

The sound pressure at the input is given by

0 ( , ,0)P jk c x yρ φ=  becomes 

0

0 0

4

m nw

k c
P j

S

ρ ∞ ∞

= =

= ∑∑       

  

( )
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 (A-29) 

The sound pressure at the output is given by 

( , , )
L

P jk c x y Lρ φ=   

0 0

4
L

m nw

k c
P j

S

ρ ∞ ∞

= =

= ∑∑       
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( )
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, ,

, , , ,
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cos cos
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 (A-30) 

Therefore, average sound pressure at the 

output piston becomes 

( ) ( )
1 1
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where 

( ) ( )
1 1

( ) ( )
0 0

, ( )
1

1
 

i i
L L

i i
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M
a b
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cos cos
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(A-32) 

Expanding (A-31) with m=0 and n=0, aver-

age sound pressure at the output becomes 

4 1

sin( )
L

w

k c
P j

S kL

ρ 
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+ ∆ 
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(A-33) 

where the symbol 
•

•

∑ means
n=0

∞

∑
m=0

∞

∑ without 

m=n=0. 
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Figure1.  Ventilation grille used in tropical climates countries 
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Figure2.  Model of ventilation grille 

 
Figure3. Experimental with ventilation grille 

having one input and one output. 

Figure4. Insertion loss measurement result 
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